LRRC23激活RIG-Ⅰ信号通路对流感病毒复制的影响Effect of activation of RIG-Ⅰ signaling pathway by LRRC23 on replication of influenza virus
朱艳慧,杨芳芳,王鑫,邢雅玲,刘雅琳
ZHU Yanhui,YANG Fangfang,WANG Xin,XING Yaling,LIU Yalin
摘要(Abstract):
目的 探讨LRRC23(leucine rich repeat containing 23)激活RIG-Ⅰ信号通路对流感病毒复制的影响。方法 通过在A549细胞中过表达和敲低LRRC23,探讨其对流感病毒复制的影响。将pcLRRC23质粒和siLRRC23(small interfering LRRC23)分别转染A549细胞,24 h后感染A/京防/1/86(H1N1),空斑试验和ELISA法分别检测细胞上清中流感病毒滴度和HA蛋白表达水平;qRT-PCR和Western blot法分别检测LRRC23、RIG-Ⅰ、MAVS、流感病毒M1基因及HA蛋白的表达水平;免疫荧光和免疫共沉淀试验(co-immunoprecipitation,Co-IP)检测LRRC23与RIG-Ⅰ的相互作用;双荧光素酶报告基因分析试验检测IFN-β-luc和NF-κB-luc活性。结果 过表达LRRC23可显著降低流感病毒A549细胞上清中流感病毒滴度,抑制HA蛋白的表达。过表达LRRC23通过激活RIG-Ⅰ-MAVS信号通路,增强流感病毒刺激的IFN-β和NF-κB激活,抑制流感病毒M1基因和HA蛋白的表达。相反,敲低LRRC23可增加流感病毒感染A549细胞上清中HA蛋白的表达;上调流感病毒M1基因相对表达量,下调RIG-ⅠmRNA和MAVS mRNA相对表达量。结论 LRRC23通过激活RIG-Ⅰ信号通路抑制流感病毒复制,在抗病毒天然免疫中发挥重要作用。
ObjectiveTo investigate the effect of activation of RIG-Ⅰsignaling pathway by leucine rich repeat containing23(LRRC23)on replication of influenza virus.MethodsOverexpression and knock-down of LRRC23 were performed in A549 cells to investigate its effect on influenza virus replication. A549 cells were transfected with pcLRRC23 plasmid or siLRRC23(small interfering LRRC23)for 24 h and then infected with influenza virus A/jingfang/1/86(H1N1). The virus titer and HA protein expression level in the cell supernatant were determined by plaque assay and ELISA respectively.The expression of LRRC23,RIG-Ⅰ,MAVS,M1 and HA at gene and protein levels were determined by qRT-PCR and Western blot respectively. The interactions between LRRC23 and RIG-Ⅰwere analyzed by co-immunopre-cipitation(Co-IP)and immunofluorescence assay(IFA). IFN-β-luc and NF-κB-luc activities were determined by dual-luciferase reporter assay.ResultsThe LRRC23 overexpression significantly decreased the influenza virus titer and inhibited the expression of HA protein in the supernatant of A549 cells,while enhanced the NF-κB and IFNβ activations by activation of RIG-Ⅰ-MAVS signaling pathway,resulting in the inhibition of expressions of M1 gene and HA protein. Conversely,the knock-down of LRRC23 increased the protein expression level of HA in the supernatant of A549 cells,up-regulated the relative expression level of M1 gene and down-regulated those of RIG-ⅠmRNA and MAVS mRNA.ConclusionLRRC23 plays an essential role in innate antiviral response by inhibiting influenza virus replication through activation of RIG-Ⅰsignaling pathway.
关键词(KeyWords):
流感病毒;LRRC23;RIG-Ⅰ信号通路;HA蛋白
Influenza virus;LRRC23;RIG-Ⅰ signaling pathway;HA protein
基金项目(Foundation): 河南省中医药科学研究专项课题(20-21ZY2147);; 河南中医药大学博士科研启动基金(RSBSJJ2019-08)
作者(Author):
朱艳慧,杨芳芳,王鑫,邢雅玲,刘雅琳
ZHU Yanhui,YANG Fangfang,WANG Xin,XING Yaling,LIU Yalin
DOI: 10.13200/j.cnki.cjb.003551
参考文献(References):
- [1] LEE V,HO Z J M,GOH E,et al. Advances in measuring influenza burden of disease[J]. Influenza Other Resp,2018,12(1):3-9.
- [2] World Health Organization. WHO launches new global influenza strategy[EB/OL].(2019-03-11)[2022-01-22]. https://www.who.int/news-room/detail/11-03-2019-who-launches-newglobal-influenza-strategy.
- [3] STALLER E,SHEPPARD C,NEASHAM P,et al. ANP32 proteins are essential for influenza virus replication in human cells[J]. J Virol,2019,93(17):e00217-19. DOI:10.1128/JVI.0-0217-19.
- [4] PANG I,PILLAI P,IWASAKI A. Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-Ⅰ[J]. PNAS,2013,110(34):13910-13915.
- [5] ICHINOHET. Respective roles of TLR,RIG-Ⅰand NLRP3 in influenza virus infection and immunity:impact on vaccine design[J]. Expert Rev Vaccin,2010,9(11):1315-1324.
- [6] LIN L,LIU Q,BERUBE N,et al. 5′-Triphosphate-short interfering RNA:potent inhibition of influenza A virus infection by gene silencing and RIG-Ⅰactivation[J]. J Virol,2012,86(19):10359-10369.
- [7] LIU G,PARK H,PYO H,et al. Influenza A virus panhandle structure is directly involved in RIG-Ⅰactivation and interfe-ron induction[J]. J Virol,2015,89(11):6067-6079.
- [8] LIU G,ZHOU Y. Cytoplasm and beyond:the dynamic innate immune sensing of influenza A virus by RIG-Ⅰ[J]. J Virol,2019,93(8):e02299-18. DOI:10.1128/JVI.02299-18.
- [9] TASHEVA E,AN K,BOYLE D,et al. Expression and localization of leucine-rich B7 protein in human ocular tissues[J]. Mol Vis,2005,11:452-460.
- [10] GARCIA-BUSTOS J,HEITMAN J,HALL M. Nuclear protein localization[J]. Biochim Biophys Acta,1991,1071(1):83-101.
- [11] LANDSCHULZ W,JOHNSON P,MCKNIGHT S. The leucine zipper:a hypothetical structure common to a new class of DNA binding proteins[J]. Science,1988,240(4860):1759-1764.
- [12] NEUBERG M,ADAMKIEWICZ J,HUNTER J,et al. A Fos protein containing the Jun leucine zipper forms a homodimer which binds to the AP1 binding site[J]. Nature,1989,341(6239):243-245.
- [13] MAEKAWA T,SAKURA H,KANEI-ISHII C,et al. Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain[J]. EMBO J,1989,8(7):2023-2028.
- [14] MIYAZONO K,TEN DIJKEP,HELDIN C. TGF-beta signaling by Smad proteins[J]. Adv Immunol,2000,75:115-157.
- [15] HERLAAR E,BROWN Z. p38 MAPK signalling cascades in inflammatory disease[J]. Mol Med Today,1999,5(10):439-447.
- [16] JOHNSON H,SUBRAMANIAM P,OLSNES S,et al. Trafficking and signaling pathways of nuclear localizing protein liga-nds and their receptors[J]. Bioessays,2004,26(9):993-1004.
- [17] DU Y,DUAN T,FENG Y,et al. LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-Ⅰfor autophagic degradation[J]. EMBO J,2018,37(3):351-366.
- [18] XIAN H,YANG S,JIN S,et al. LRRC59 modulates type I interferon signaling by restraining the SQSTM1/p62-mediated autophagic degradation of pattern recognition receptor DDX58/RIG-Ⅰ[J]. Autophagy,2020,16(3):408-418.
- [19] ZHU Y H,SHAO Y,QU X Y,et al. Sodium ferulate protects against influenza virus infection by activation of the TLR7/9-MyD88-IRF7 signaling pathway and inhibition of the NF-κB signaling pathway[J]. Biochem Biophys Res Commun,2019,512(4):793-798.
- [20] DIEBOLD S,KAISHO T,HEMMI H,et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA[J]. Science,2004,303(5663):1529-1531.
- [21] LIU Y,OLAGNIER D,LIN R. Host and viral modulation of RIG-Ⅰ-mediated antiviral immunity[J]. Front Immunol,2017,7:662.
- [22] LIU G,LU Y,THULASI RAMAN S,et al. Nuclear-resident RIG-Ⅰsenses viral replication inducing antiviral immunity[J]. Nat Commun,2018,9(1):3199.
- [23] PATEL J,JAIN A,CHOU Y,et al. ATPase-driven oligomerization of RIG-Ⅰon RNA allows optimal activation of type-I interferon[J]. EMBO Rep,2013,14(9):780-787.
- [24] PEISLEY A,WU B,XU H,et al. Structural basis for ubiquitinmediated antiviral signal activation by RIG-Ⅰ[J]. Nature,2014,509(7498):110-114.
- [25] SETH R,SUN L,EA C,et al. Identification and characterization of MAVS,a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3[J]. Cell,2005,122(5):669-682.
- [26] FENG Y,DUAN T,DU Y,et al. LRRC25 functions as an inhibitor of NF-kappaB signaling pathway by promoting p65/RelA for autophagic degradation[J]. Sci Rep,2017,7(1):13448.
- [27] TATEMATSU M,FUNAMI K,ISHII N,et al. LRRC59 regulates trafficking of nucleic acid-sensing TLRs from the endoplasmic reticulum via association with UNC93B1[J]. J Immunol,2015,195(10):4933-4942.
- [28] NG A,EISENBERG J,HEATH R,et al. Human leucine-rich repeat proteins:a genome-wide bioinformatic categorization and functional analysis in innate immunity[J]. PNAS,2011,108(Suppl 1):4631-4638.